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Representation of the function Tr(exp(A -AB))  as a 
Laplace transform with positive weight and some matrix 
inequalities 

K J Le Couteur 
Research School of Physical Sciences, The Australian National University, Canberra, ACT 
2600, Australia 

Received 23 April 1979, in final form 15 April 1980 

Abstract. The conjecture that Tr(exp(A -AB)) can be written as a Laplace transform with 
positive measure p is considered for finite Hermitian matrices A and E by means of 
Bernstein's theorem. An explicit formula is given for the moments of p in terms of divided 
differences of exp(A) and elements of E.  For a large class of matrices A and E the moments 
of p take their maximum and minimum values when A and E commute and so upper and 
lower bounds for the moments of p are established; further analysis suggests that this is 
generally true if E is positive definite and A and E are bounded. 

Some inequalities for the divided differences of the exponential are derived. Also, if A 
and E are both positive definite, upper and lower bounds are derived for Tr(A"E") and 
Tr(AE)" in terms of the eigenvalues of A and E.  

1. Introduction 

Bessis et ul (1975) conjectured that if A and B are Hermitian matrices of finite order N 
and A is a real parameter, the trace i f  the exponential has a representation 

b+ 

Tr(exp(A -AB)) = e-Afp(t)  dt (1.1) 
b-  

where p ( t )  is a positive weight and b- and b, are the lowest and highest eigenvalues of B. 
The existence of the representation is obvious if A and B commute and has further 

been demonstrated by Mehta and Kumar (1976) in the special case that A is a tree 
matrix in the representation with B diagonal. 

The main importance of this conjecture is that the existence of a representation with 
positive weight p implies that successive Pad6 approximants to the function (1.1) 
provide upper and lower bounds to the true value (Baker 1972). This allows, for 
example, approximations to the partition function of statistical mechanics as a function 
of a coupling parameter A .  

The matrix B can be expressed as 

B = b I + B '  (1.2) 

where 0 < 6-  and E' is a positive definite Hermitian matrix with eigenvalues lying 
between b- - b and b ,  - b. Then since 

(1.3) Tr(exp(A -AB)) = eCAbTr(exp(A -AB')) 
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it is sufficient to prove that p ( t )  is positive in the representation 
00 

Tr(exp(A -AB)) = I e-^'p(t) dt, 
0 

(1.4) 

in which A is Hermitian and B positive definite. 
The formal solution to (1.4) is given by the inverse Laplace transform 

p ( t ) = L j  Tr(exp(A-AB+ht))dh. (1.S) 
27ri c-loo 

Additional results were given by Le Couteur (1978). In the steepest descent 
approximation it was possible to deduce from (1.5) that p ( t ) z O .  An extensive 
discussion of the third moment of p was given in geometric terms and a positive lower 
bound to the third moment of p for three-dimensional matrices was established. 

2. Conditions for the existence of the representation 

The necessary and sufficient condition for the existence of (2.3) with positive weight p is 
given by Bernstein's theorem (Widder 1971) as 

d" >o for II even 
- Tr(exp(A -AB))[ 
dh " <O fo ra  odd . 

Now, the representation of the exponential as 

e" = lim (1 + A / L ) ~  
L+a3 

implies immediately 
1 d 

dh 0 
- (exp(A -AB)) = -1 dx eXAB eY" . u + y - l  

where 

A=A-AB. 

so, 
d 
- Tr(exp(A -AB)) = -Tr(exp(A - AB))B 
dh 

and by further differentiation of the exponential 

d" 
- Tr(exp(A -AB)) 
dh " 

= (-1)"h- l)! Tr(eX1"B eX2*B. . . exn-lhB ex-"B) dxl . . . dx,-1 II 
x,>o,x1+. . . + x , = I  

= (-1)"9" (2 .Sa)  
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= (-l)"n! [I Tr(eX1*B. . . eXrAB, , . eXPB eXn+l* ) dxl . . . dx, 

x r > o , x l + .  * .+xn+1=1.  (2.5b) 

So, from (2.1) the existence of the representation (1.4) or (1.1) follows if the integrals 4, 
in (2.5) are all positive. As the matrix products in the integrands of ( 2 . 5 ~  or b )  are not 
positive definite the sign of 4, is not easily determined. The evaluation and bounds of 
4" will be considered in the following sections. 

3. Evaluation of derivatives and moments 

The integral (2.5) for 4" is most simply evaluated in a representation with A diagonal, 
with eigenvalues A,. Then the integral is, taking n = 4 for definiteness, 

= 3! eXALB, eY*lBJk eZAkBkl ef*lBl1 dx dy dz (3.1) 
ilk1 I 

with x + y + z + t = 1. The integral is given by Hermite's formula for divided differences 
(Milne-Thomson 1933) of e* as 

 PI = (a  - I)! [A,, A,, Ak, . . A,, ~ q ] B L J B 1 k .  . . BPqBqr (3.2) 
1.1 

with n factors B,. 
By a generalisation of Rolle's theorem the divided difference can be expressed as 

[~d,,  A,, hk, . . ., A,] = e*"/(n - I)! (3.3) 

with A" in the range A,, AI, ilk, . . ., A,. So in the special case when B commutes with A, 
and thus with A, we recover the obvious result 

According to (1.4) for A = O  the integral 4, reduces to the nth moment of the 
distribution p ( t ) :  

Thus P,, is given by putting A = 0, A = A in (3.2) as 

P,, = 1 ( n  - l)![Ai, A ,  . . . , A,,,, A,]BijBjk. . . B,,B,i. . .  
i , J  ... 

(3.6) 

The upper and lower bounds for P,, are given by equations (4.6), (4.7) and (4.8) of the 
next section with Ai in place of Ci. 

Bessis et a1 (1975) have shown how these moments can be used to give approxima- 
tions to the trace (1.1). Equation (3.6) can also be derived from the work of Schafroth 
(1951). 

Approximations to (3.1) are possible, for example by forming its Laplace or Fourier 
transform, but seem to offer no advantage over the steepest descent approximation to 
(1.5). 
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4. Special cases 

In the representation with A diagonal 

xi > 0, c x i = l .  (4.1) 

Let A, and A- be the greatest and least eigenvalues of A; then 

e 4 - s ( n  - l)!  1 e'i'r. . . exm"q dxl . . . dx,-lce"+, (4.2) 

because 

1 = ( n  - l)! dxl . . . dx,,..1 X , > O , X l + .  . .+x ,  = 1 (4.3) I 
so that the integral (4.2) is a weighted mean of exponentials. Therefore, if all circuit 
matrix elements B,,B,k. . . B,, are positive in the A representation 

e"--BE s$,, e"+B:: 
1 I 

and we are led to the following proposition. 

(4.4) 

Proposition 1. If C is a given Hermitian matrix with greatest and least eigenvalues C, 
and C- and B is a positive definite matrix of finite norm, with positive circuit matrix 
elements in the representation with C diagonal, then 

J,, = ( n  - l)! Tr exlcB. . . exncB dx , a . dxn-l c x , = 1  (4.5) I 
is positive with bounds 

ec Tr(B")sJ , ,  s e c +  Tr(B") (4.6) 

which are attained when B commutes with C. 
The result (4.6) follows immediately from (4.4). 
The positive circuit matrix elements are found in the following cases. 

(i) If all B,, are positive. 
(ii) For 2 x 2 matrices, in which off-diagonal elements of B enter only as lB,112. 

(iii) If B is approximately diagonal in the C representation, for to order IB,, 1 2 ,  i f j ,  
the only contributions to J,, from off-diagonal elements of B are of the form 
B:,B,B;,B,,B:,, r + s t t +  2 = n, which are positive since B is Hermitian. 

(iv) If B is a 'tree' matrix in the representation with C diagonal. 
Under the same conditions closer bounds can be derived. 

Proposition 2. If B and C satisfy the conditions of proposition 1, then the upper and 
lower bounds of the integral J,, are 

J,, sup = eciBY, (4.7) 
i 

in which the eigenvalues Ci and B, of C and B are both arranged in ascending order 
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(similarly ordered), and 

with the eigenvalues Ci in ascending and Bi in descending order (oppositely ordered). 

Proof. The convexity of the exponential function leads directly to the inequality for 
divided differences stated in appendix 1, from which it follows that 

or 

Tr eCB" 2 J, 2 Tr(eC'"B)" (4.10) 

and then, using the final result of appendix 2, 

1 eCaBy(similarly ordered) >J,  2 eCiB;(oppositely ordered). (4.11) 

Note that proposition 1 is a consequence of the second, and is obtained by varying the Bi 
in (4.11). However, the first is more easily derived independently. 

i i 

3 x 3 matrices. Without the assumption of positive circuit matrix elements, the analysis 
is much more difficult; however, by inequalities Le Couteur (1978) derived the lower 
bound 

(4.1.2) 

for a general Hermitian A and positive definite B. This result is similar to (4.6) and 
(4.11) and the bound is realised by commuting matrices B and C. 

5. General positive definite B :  computational results 

It is important to know whether the bounds on 4, or J,, given in §4 are generally valid 
for positive definite matrices B, without the restriction that the circuit matrix elements 
of B are positive. Because of the severe analytical difficulties of this non-linear 
problem, an extensive computer survey was made to determine the minima of 9, or J,, 
using matrices B with elements Bi, of either sign. 

In the first series of computations to test positivity of 4, matrices B normalised to 
Tr B = 1 and matrices A with Tr A fixed were explored. The elements of B and h were 
varied to find the lowest 4,,, calculated from (3.2), by using the general minimisation 
code PRAXIS in double precision arithmetic. The search was limited to matrix dimen- 
sions N s 7 and orders 3 ,4 ,5  of 9,, with many different randomly generated matrices A 
and B used as the starting point for minimisation. In each case the minimum of 4, was 
positive, typically of order 

The form of these results suggested the bounds stated in 04, and to test these directly 
matrices C with given eigenvalues and matrices B with given eigenvalues or given trace 
were examined in a second series of computations. All results were consistent with the 
bounds. 

starting from an initial value of order lo7. 
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As the number of terms in equation (3.2) for 4, is N" it is difficult to extend these 
results further. However, the structure of (4.1) shows that negative contributions to 9,, 
can arise first when N 3 3 and n 3 3 so the results given are a significant test of the 
bounds stated, without the restriction to positive circuit matrix elements. 

6. General positive definite B :  variational methods 

The results given in 3 4 cover the main cases in which p ( t )  and 4, are known to be 
positive. The results of 3 5 suggest that the bounds stated in 0 4 are generally true for all 
positive definite B and so an analytical investigation of the minima of 4, or J,  is 
appropriate, 

We suppose B is scaled to satisfy the condition 

Tr B" = 1, (6.1) 

B = p 2  (6.2) 

and since B is positive definite it may be parametrised as 

where p is a Hermitian matrix, constrained only by (6.1). 

of the trace 
Now consider a variation SB of B keeping C fixed; then using the cyclic properties 

SJ, = n !  Tr J (eX1"BCx2". . . B e""") SB dxl . . . dx,-1= n Tr QSB (6.3) 

where the matrix Q is defined by (6.3) and formally 

Qij = - 1 (-) SJ, 
n SBji (6.4) 

Note that the definitions of J,  and U imply generally 

J, = Tr QB. (6.5) 

The condition for a turning value of J,, subject to the auxiliary condition (6.1), is, with a 
Lagrangian multiplier p, 

T r Q S B = p T r B " - ' S B  (6.6) 

or, from (6.2), 

Tr(Qp +pQ) Sp = 2 p  TrB"-'p Sp 

and since Sp is an arbitrary Hermitian matrix this requires the coefficient of Sp, to 
vanish, that is 

Q p + p Q = 2 p B n - ' p  

or 

QB =BO = pQp = pB" 

and so at the turning value 

J,  = k. 
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(6.9) 

aJ,(e)/ae = n !  Tr C x1 exleCB. . . B eXneCB dxl . . . dx,-l (6.10) I 
= n !  Tr C I  exIecB. . . B exmeCB eXn+lec dxl . . . dx, ( Z x i = l )  (6.11) 

=Tr  CR 

where the Hermitian matrix R, defined by (6.11), is the same as that introduced in 0 10 
of Le Couteur (1978) to handle general variations of A or C according to 

(6.12) 

As discussed in that paper, equation (6.7) has simple solutions in which B commutes 
with C, J,, = Tr eABn > 0, Q = eABn-l, but the general solution of (6.7) or of (6.7) and 
(6.12) in combination is not known. However, in principle the most general solution is 
not required; we need only the solutions corresponding to the lowest (or highest) value 
of J,. In the following these are examined by a heuristic argument. 

As 8 increases from 0 to 1 the curve along which, for each 8, J ( 8 )  attains its lowest 
(highest) value must be the envelope of all solutions of (6.7) with C replaced by OQ: at 
each 8 let B(8)  be the matrix B which gives the point on the envelope. 

It is now necessary to assume that B(8)  varies continuously with 8. Then at each 8, 
B(0)  must minimise (maximise) aJ,/a8 as well as J ( 8 )  so that in addition to 

Q(e)B(e) = F(8)Bn(8)  ( 6 . 7 ~ )  

SJ, = Tr R SC. 

B(8)  must satisfy the similar equation derived by variation of (6.10) or (6.11). As 

(aJn ( 8 1 /de  ) 

= n !  Tr (Cx, exIeCB. . . exnec +eXneCBCxl eXlec. . . +. . . I 
+ exZecB. . . Cxl eXlec) dxl . . . dx,-1 SB 

= Tr S x SB (6.13) 

the condition is 

s(e)B(e) = vBfl(e). (6.14) 

Now consider how the envelope starts from 8 = 0. For 6 << 1 

J,  ( e )  = Tr B (e) + 8 Tr CB (e) + O( 8'). (6.15) 

With the scaling (6.1) the upper and lower bounds of Tr CB"(8) are C+ and C- 
which are attained when B(8)  commutes with C and has only one non-vanishing 
eigenvalue, 1, in correspondence with C, or C- respectively, as follows by evaluating 
the trace in a representation with C diagonal. This defines the initial B(8) = B(0). As 8 
increases the same B(8) continues to satisfy ( 6 . 7 ~ )  and (6.14) and, as shown in 0 4, for 
each e makes J n ( 8 )  a local maximum (minimum) with respect to variation of B. The 
argument of 04, applied to (6.10), shows that the same B(8)  makes dJ,/d8 a local 
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maximum (minimum) with respect to variation of B. Therefore with the above 
continuity assumption, the upper (lower) envelope is generated by B(8)  = B(0). 
Accordingly, putting 8 = 1, 

(6.16) C- eC+ > J, > e 

and as J,  scales as B" this implies the bounds stated in proposition 1. 
The other solutions of (6.7) and (6.14) in which B commutes with C are not true 

minima or maxima of J,; as shown in appendix 3, they are saddle points and the results 
of 9 4 make it clear that these solutions cannot cross the bounds given. At 8 = 0 these 
are the only solutions, but it has not been possible rigorously to exclude the possibility 
that new types of solution may appear for 8 above some positive lower limit Bo, and 
eventually cross the bounds for some 8 > Bo; this is why above continuity was assumed 
explicitly. Such new solutions are unlikely because the n 2  matrix element Bij would 
have to satisfy the 2n2 conditions (6.7) and (6.14). This type of non-linear problem is 
usually handled by computation and the extensive search described in 9 5 found no 
exception to the bounds proposed. 

Proposition 2 can be examined similarly for general positive definite matrices B. 
Keeping C fixed, consider infinitesimal variations of B which leave its spectrum 
unchanged: 

B + (1 +ic)B( l  -ie) SB = i(E, B )  (6.17) 

where E is an arbitrary infinitesimal Hermitian matrix. Then, from (6.3) 

SJ, = Tr i Q(E, B )  = i (BQ - QBjjkEki.  
i, k 

(6.18) 

The matrices B which yield turning values of J,  must make SJ, vanish for an 
arbitrary Hermitian E ; since Q and therefore i(B, Q) are Hermitian this requires 

(B, Q) = 0. (6.19) 

Alternatively to (6.17) one could vary C by canonical transformation leaving B 
unchanged and then, using (6.13), the condition for a stationary value of J,  is 

(C, R )  = 0. (6.20) 

But (6.20) does not yield independent information from (6.18) because simultaneous 
canonical transformation of B and C gives SJ, = 0, so that 

(B, Q) + (C, R )  = 0. 

As in the previous case, we seek the upper and lower envelopes of the solutions of 
(6.19) with C replaced by 8C; these must satisfy 

(Q(e), B(8) )  = 0 and W e ) ,  B(8))  = 0 (6.21) 

in place of ( 6 . 7 ~ )  and (6.14). 
For 8<< 1, (6.15) shows that the upper (lower) bound of J n ( 8 )  corresponds to the 

extremum of Tr CB"(0) which, according to a theorem of Marcus (1956), occurs when 
B(B) commutes with C and the eigenvalues Ci and Bi are arranged in the same 
(opposite) order. As previously, it is expected that this B(8)  generates the whole upper 
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(lower) envelope on which J,, is then trivially evaluated as 

J,, = 1 eCrB:, (6.22) 
r 

which has upper and lower bounds when the eigenvalues of B and C are ordered as 
stated in proposition 2. 

7. Discussion 

As mentioned in the introduction, the existence of the representation (1.1) has 
important consequences for the application of Pad6 approximations to problems of 
statistical mechanics and possibly Euclidean field theory. Bessis et a1 (1975) showed 
how these approximations may be developed in terms of the moments of p. An 
advantage of the approach of this paper is that it provides explicit formulae for the 
moments in the general case of Hermitian A and positive definite B. The upper and 
lower bounds for the moments stated in Q 4 hold strictly under the conditions given 
there and the close bounds will often provide useful approximations to the moments. 

The moments 4,, must be positive under much less restrictive conditions than given 
in § 4, because small negative contributions cannot change their sign. As shown in 0 0  5 
and 6, it is likely that the bounds stated are generally valid if A and B are bounded and B 
is positive definite. In any case, the problem of determining the bounds of 4,, in terms of 
the eigenvalues or traces of A and B is well posed and the variational equations given in 
0 6 provide strong constraints on the matrices to be considered in a more complete 
solution. 

It may be remarked that the difficulty of a more direct approach to the general 
problem is that 4, is a polynomial of degree n in the Bii and, for n > 2, a positive definite 
polynomial cannot necessarily be expressed as a sum of squares. 

The analysis leads to some inequalities for divided differences of the exponential 
and for Tr(AB)". These are of general interest apart from the main problem and so 
have been separated into two appendices. 
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Appendix 1. Inequality for divided differences of the exponential 

Hermite's formula (Milne-Thomson 1933) expresses the nth divided difference of ec as 
a weighted average: 

(n - l)![CiCi. . . C,] = (n  - l)! exzcJ. . . exec* dxl . . . dx,,-1 I 
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As ec is a convex function of C, for any set of xi in the integrand 

x 1 e c ~ + x 2 e c ~ + .  . .+x ,  ecqaexp(xlCi+ . . .+  x , ~ , ) .  (Al.1) 

By summing over the n cyclic permutations of the xi we obtain, since I; x, = 1, 

a nexp(Ci + C, +. . . + C,)/n, (A1 -2) 

in which the last inequality follows from comparison of arithmetic and geometric 
means. 

By applying this to Hermite's integral we find an inequality for divided differences: 

(A1.3) (eci+eCJ..  . + e c Q ) / n a ( n - l ) ! [ C i C i . .  . ~ , ] = = e x p [ ( ~ ~ + .  . . + ~ , ) / n ] .  

Appendix 2. Inequality for matrix power products 

If A,  B are positive definite N x N  matrices it was shown by Golden (1965), and 
Thompson (1965) for n = 2" and by Lieb and Thirring (1976) for general n, that 

Tr A"B" aTr(AB)"  (A2.1) 

and by Marcus (1956) that 

(A2.2) 
i i 

where Ai, Bi are the eigenvalues of A ,  B ordered in the same sense. These results 
suggest 

Tr(AB)" ax AYB&-, (A2.3) 

which does not seem to be in the literature and is a simple example of the method of § 6. 

i 

Proof. Let R = (AB)" = A B A B .  . . AB. Since the eigenvalues A,, B, are fixed, the 
turning values of Tr R with respect to canonical transformation of B as in (6.15) are 
determined from (6.17): 

QB = BQ with Q = ABAB.  . , A .  (A2.4) 

Thus, at a stationary value of Tr R, 

R = ABAB. . . AB = BABA . . . BA = (B ' /~AB' /~)"  (A2.5) 

where B1/2 is the positive square root of B. It follows immediately from (5) that R is 
Hermitian and 

BR = R B  and A R  = R A ,  (A2.6) 

of which the second is equation (6.20) for this special case. If the eigenvalues of R are 
all different, (6) implies that A and B are diagonal in the representation with R diagonal 
and therefore commute with each other. If the eigenvalues of R are degenerate there is 
a subspace in which R is a positive multiple r of the unit matrix and in this subspace 
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B'/2AB'/2 = R'" is a positive multiple of the unit matrix so that again A and B 
commute. Thus, at a turning value of Tr R, 

Tr(AB)" = A;B; (A2.7) 

and the upper and lower limits stated in ( 2 )  and ( 3 )  follow from classical inequalities for 
the ordering of the sets A ,  Bp So, collecting results, we have 

1 AYBY S T r  A"B" sTr (AB)"  31 AYBk-i. (A2.8) 
i 

Appendix 3. Other stationary values 

.In is obviously stationary with respect to small variations of C or B whenever B and C 
commute and the nature of these N !  stationary values is of interest. Assuming given 
eigenvalues of C and B, let C be diagonal and let bi denote eigenvalues of B. Then 

B = e-i'b eic E = € ,  (A3.1) 

and as we need consider only small variations of B from the diagonal form, it is sufficient 
to work to second order in E ,  assumed small. Then 

+ 

B = (1 - ir - e 2 / 2 ) b ( 1  + ie - 2 / 2 )  

i # j  ( A 3 . 2 ~ )  1 1  
Bjj =i€jj(bi-bj)+c EikEkj(bk -?bj-?bj) 

k 

(A3.2b) 

and, since the E transformation is unitary, transformation of B "  gives 

(Bn)ji = by +e iEjk12(bi -by) .  (A3.3) 

Equation (A3.3) has contributions both from the off -diagonal terms Bii which must 
appear in pairs BiiBii and from the diagonal terms (Bii)"; these are easily separated: 

(B")ii =by +e bY-11~ik/2(bk -b i )  (diagonal terms) 

k 

k 

+e lEik/2[b; -bY + nbY-l(bi - b k ) ]  (off-diagonal terms). (A3.4) 
k 

The terms in (A3.4) can be derived directly: 

(B")ji = (BB . . . B)ij 

= by + n / ~ ~ ~ 1 ~ b Y - ~  (b, - bi) (diagonal terms) 
i 

+ 1 b:Biib;Biibf r + s + t + 2 = n (off -diagonal terms). 
j # i  r,s,f 

Consider 

(A3.5) 

J, = (n  - l)! eXlcB. . . eXnCB dxl . . . dx,-1 l x i = l .  (A3.6) I 
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When E = 0, C and B commute and J, = Z i  e'BY, we have to calculate J, to second order 
in E to determine 

AJ, = J, -1 eciBY 
i 

=e eC'[(Bii)" -bY]+c  1 1 ( n  - l)! exlCibi. . . bi e"r+lciBiJ 
i i j t i  r,s,f 

(A3.7) 

For j # i, B,,B,, = I~,,1~(b, -b,)2 and the contributions to AJ, from the various I E , , / '  are 
additive and may be considered separately. Suppose that just one E , ,  is ncn-vanishing. 
Note that if C, and C, were equal the integral in the last line of (A3.8) would exactly 
equal eci x the 'off-diagonal' contribution to (B"),, as given in (A3.5): quite generally, 
since the integrand is positive, we find, according as C, 3 C,, AJ, 3 RHS of (A3.8) with C, 
replaced by C, in the integrand 

= eCL[(Bll)" -b:]+eC~[(B,,)" -b r ]  

+ ecJ('off-diagonal' contributions to (B"),, + (B"),,) 

= (eCc -eCl)[(BII)" -b:]+eC~[(B"),, +(B"),, -b:  -b:] (A3.9) 

and the last term vanishes because the E transformation preserves the trace of B". So 
finally, using (A3.2), 

AJ, &(eCi-eC~;)nbr-'(bj-bi) (A3.10) 

according as Ci & Ci. Then AJ, > 0 and J, is a true minimum if Ci and bi are oppositely 
ordered and AJ, < 0 and J, is a true maximum if Ci and bi are similarly ordered. For the 
other possible orderings of bi relative to Ci, J, is stationary only; these are saddle points. 

Similarly, consider 

dJn/dO = n ! Tr Cxl exIceB. . . exncRB dxl . . . dx,.-l. (A3. I 
When E = 0, A and B commute and dJn/dO = Z i  Ci eCieBY. With B given by (A3.2) 
second order in E we find, as in (A3.8), 

A(dJJdt9) = (dJ,/dB) -1 Ci eCiebY 
i 

= 1 Ci eecl[(Bii)" -by] + 1 Cixl e"lCibi. . . bi 
i i , j # i  rsf 

x e x ~ + ~ c ~ 8 B i j ,  . . Bji . , , exncisbi dxl . . . dx,-I. 

And so, as in (A3.10), 

A(dJ,/dB)S Ci[(eeci -eecJ)br-l (b, -bill 

to 

(A3.12) 

ac'cording as Ci & Ci. So dJ,,/dO is a true minimum if Ci and bi are oppositely ordered 
and dJn/dB is a true maximum if Ci and bi are similarly ordered. 
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