Representation of the function $\operatorname{Tr}(\exp (A-\lambda B))$ as a Laplace transform with positive weight and some matrix inequalities

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1980 J. Phys. A: Math. Gen. 133147
(http://iopscience.iop.org/0305-4470/13/10/012)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 04:37

Please note that terms and conditions apply.

Representation of the function $\operatorname{Tr}(\exp (A-\lambda B))$ as a Laplace transform with positive weight and some matrix inequalities

K J Le Couteur
Research School of Physical Sciences, The Australian National University, Canberra, ACT 2600, Australia

Received 23 April 1979, in final form 15 April 1980

Abstract

The conjecture that $\operatorname{Tr}(\exp (A-\lambda B))$ can be written as a Laplace transform with positive measure ρ is considered for finite Hermitian matrices A and B by means of Bernstein's theorem. An explicit formula is given for the moments of ρ in terms of divided differences of $\exp (A)$ and elements of B. For a large class of matrices A and B the moments of ρ take their maximum and minimum values when A and B commute and so upper and lower bounds for the moments of ρ are established; further analysis suggests that this is generally true if B is positive definite and A and B are bounded.

Some inequalities for the divided differences of the exponential are derived. Also, if A and B are both positive definite, upper and lower bounds are derived for $\operatorname{Tr}\left(A^{n} B^{n}\right)$ and $\operatorname{Tr}(A B)^{n}$ in terms of the eigenvalues of A and B.

1. Introduction

Bessis et al (1975) conjectured that if A and B are Hermitian matrices of finite order N and λ is a real parameter, the trace of the exponential has a representation

$$
\begin{equation*}
\operatorname{Tr}(\exp (A-\lambda B))=\int_{b_{-}}^{b_{+}} \mathrm{e}^{-\lambda t} \rho(t) \mathrm{d} t \tag{1.1}
\end{equation*}
$$

where $\rho(t)$ is a positive weight and b_{-}and b_{+}are the lowest and highest eigenvalues of B.
The existence of the representation is obvious if A and B commute and has further been demonstrated by Mehta and Kumar (1976) in the special case that A is a tree matrix in the representation with B diagonal.

The main importance of this conjecture is that the existence of a representation with positive weight ρ implies that successive Padé approximants to the function (1.1) provide upper and lower bounds to the true value (Baker 1972). This allows, for example, approximations to the partition function of statistical mechanics as a function of a coupling parameter λ.

The matrix B can be expressed as

$$
\begin{equation*}
B=b I+B^{\prime} \tag{1.2}
\end{equation*}
$$

where $b<b_{-}$and B^{\prime} is a positive definite Hermitian matrix with eigenvalues lying between $b_{-}-b$ and $b_{+}-b$. Then since

$$
\begin{equation*}
\operatorname{Tr}(\exp (A-\lambda B))=\mathrm{e}^{-\lambda b} \operatorname{Tr}\left(\exp \left(A-\lambda B^{\prime}\right)\right) \tag{1.3}
\end{equation*}
$$

it is sufficient to prove that $\rho(t)$ is positive in the representation

$$
\begin{equation*}
\operatorname{Tr}(\exp (A-\lambda B))=\int_{0}^{\infty} \mathrm{e}^{-\lambda t} \rho(t) \mathrm{d} t \tag{1.4}
\end{equation*}
$$

in which A is Hermitian and B positive definite.
The formal solution to (1.4) is given by the inverse Laplace transform

$$
\begin{equation*}
\rho(t)=\frac{1}{2 \pi \mathrm{i}} \int_{c-1 \infty}^{c+\mathrm{i} \infty} \operatorname{Tr}(\exp (A-\lambda B+\lambda t)) \mathrm{d} \lambda . \tag{1.5}
\end{equation*}
$$

Additional results were given by Le Couteur (1978). In the steepest descent approximation it was possible to deduce from (1.5) that $\rho(t) \geqslant 0$. An extensive discussion of the third moment of ρ was given in geometric terms and a positive lower bound to the third moment of ρ for three-dimensional matrices was established.

2. Conditions for the existence of the representation

The necessary and sufficient condition for the existence of (2.3) with positive weight ρ is given by Bernstein's theorem (Widder 1971) as

$$
\frac{\mathrm{d}^{n}}{\mathrm{~d} \lambda^{n}} \operatorname{Tr}(\exp (A-\lambda B))\left\{\begin{array}{lc}
>0 & \text { for } n \text { even } \tag{2.1}\\
<0 & \text { for } n \text { odd } .
\end{array}\right.
$$

Now, the representation of the exponential as

$$
\mathrm{e}^{\Lambda}=\lim _{L \rightarrow \infty}(1+\Lambda / L)^{L}
$$

implies immediately

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \lambda}(\exp (A-\lambda B))=-\int_{0}^{1} \mathrm{~d} x \mathrm{e}^{x \Lambda} B \mathrm{e}^{y \Lambda} \quad x+y=1 \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda=A-\lambda B \tag{2.3}
\end{equation*}
$$

So,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \lambda} \operatorname{Tr}(\exp (A-\lambda B))=-\operatorname{Tr}(\exp (A-\lambda B)) B \tag{2.4}
\end{equation*}
$$

and by further differentiation of the exponential

$$
\begin{align*}
& \frac{\mathrm{d}^{n}}{\mathrm{~d} \lambda^{n}} \operatorname{Tr}(\exp (A-\lambda B)) \\
&=(-1)^{n}(n-1)!\iint \operatorname{Tr}\left(\mathrm{e}^{x_{1} \Lambda} B \mathrm{e}^{x_{2} \Lambda} B \ldots \mathrm{e}^{x_{n-1} \Lambda} B \mathrm{e}^{x_{n} \Lambda} B\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n-1} \\
& x_{r}>0, x_{1}+\ldots+x_{n}=1 \\
&=(-1)^{n} \mathscr{I}_{n} \tag{2.5a}
\end{align*}
$$

$$
\begin{align*}
= & (-1)^{n} n!\iint \operatorname{Tr}\left(\mathrm{e}^{x_{1} \Lambda} B \ldots \mathrm{e}^{x_{r} \Lambda} B \ldots \mathrm{e}^{x_{n} \Lambda} B \mathrm{e}^{x_{n+1} \Lambda}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n} \\
& x_{r}>0, x_{1}+\ldots+x_{n+1}=1 . \tag{2.5b}
\end{align*}
$$

So, from (2.1) the existence of the representation (1.4) or (1.1) follows if the integrals $\mathscr{\mathscr { A }}_{n}$ in (2.5) are all positive. As the matrix products in the integrands of ($2.5 a$ or b) are not positive definite the sign of \mathscr{I}_{n} is not easily determined. The evaluation and bounds of \mathscr{I}_{n} will be considered in the following sections.

3. Evaluation of derivatives and moments

The integral (2.5) for \mathscr{I}_{n} is most simply evaluated in a representation with Λ diagonal, with eigenvalues Λ_{i}. Then the integral is, taking $n=4$ for definiteness,

$$
\begin{equation*}
\mathscr{I}_{4}=\sum_{i j k l} 3!\int \mathrm{e}^{x \Lambda_{i}} B_{i j} \mathrm{e}^{y \Lambda_{i}} B_{j k} \mathrm{e}^{z \Lambda_{k}} B_{k l} \mathrm{e}^{t \Lambda_{l} B_{l l}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \tag{3.1}
\end{equation*}
$$

with $x+y+z+t=1$. The integral is given by Hermite's formula for divided differences (Milne-Thomson 1933) of e^{Λ} as

$$
\begin{equation*}
\mathscr{I}_{n}=(n-1)!\sum_{i, j \ldots}\left[\Lambda_{i}, \Lambda_{i}, \Lambda_{k}, \ldots, \Lambda_{p}, \Lambda_{q}\right] B_{i j} B_{j k} \ldots B_{p q} B_{q i} \tag{3.2}
\end{equation*}
$$

with n factors $B_{i j}$.
By a generalisation of Rolle's theorem the divided difference can be expressed as

$$
\begin{equation*}
\left[\Lambda_{i}, \Lambda_{j}, \Lambda_{k}, \ldots, \Lambda_{q}\right]=\mathrm{e}^{\Lambda^{\prime \prime} /(n-1)!} \tag{3.3}
\end{equation*}
$$

with $\Lambda^{\prime \prime}$ in the range $\Lambda_{i}, \Lambda_{j}, \Lambda_{k}, \ldots, \Lambda_{q}$. So in the special case when B commutes with A, and thus with Λ, we recover the obvious result

$$
\begin{equation*}
\mathscr{I}_{n}=\sum_{i} \mathrm{e}^{\Lambda_{i}} B_{i i}^{n}>0 \tag{3.4}
\end{equation*}
$$

According to (1.4) for $\lambda=0$ the integral \mathscr{I}_{n} reduces to the nth moment of the distribution $\rho(t)$:

$$
\begin{equation*}
\mu_{n}=\int_{0}^{\infty} t^{n} \rho(t) \mathrm{d} t=(-1) \frac{\mathrm{d}^{n}}{\mathrm{~d} \lambda^{n}} \operatorname{Tr}(\exp (A-\lambda B)) \quad(\lambda=0) \tag{3.5}
\end{equation*}
$$

Thus μ_{n} is given by putting $\lambda=0, \Lambda=A$ in (3.2) as

$$
\begin{equation*}
\mu_{n}=\sum_{i, j \ldots}(n-1)!\left[A_{i}, A_{j}, \ldots, A_{m}, A_{n}\right] B_{i j} B_{j k} \ldots B_{m n} B_{n i} . \tag{3.6}
\end{equation*}
$$

The upper and lower bounds for μ_{n} are given by equations (4.6), (4.7) and (4.8) of the next section with A_{i} in place of C_{i}.

Bessis et al (1975) have shown how these moments can be used to give approximations to the trace (1.1). Equation (3.6) can also be derived from the work of Schafroth (1951).

Approximations to (3.1) are possible, for example by forming its Laplace or Fourier transform, but seem to offer no advantage over the steepest descent approximation to (1.5).

4. Special cases

In the representation with Λ diagonal

$$
\begin{gather*}
\mathscr{I}_{n}=(n-1)!\sum_{i} \int \mathrm{e}^{x_{1} \Lambda_{i}} \mathrm{e}^{x_{2} \Lambda_{i}} \ldots \mathrm{e}^{x_{n} \Lambda_{q}} B_{i j} B_{j k} \ldots B_{q i} \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n-1} \\
x_{i}>0, \quad \sum x_{i}=1 . \tag{4.1}
\end{gather*}
$$

Let Λ_{+}and Λ_{-}be the greatest and least eigenvalues of Λ; then

$$
\begin{equation*}
\mathrm{e}^{A_{-}} \leqslant(n-1)!\int \mathrm{e}^{x_{1} \Lambda_{i}} \ldots \mathrm{e}^{x_{n} \Lambda_{a}} \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n-1} \leqslant \mathrm{e}^{\Lambda_{+}} \tag{4.2}
\end{equation*}
$$

because

$$
\begin{equation*}
1=(n-1)!\int \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n-1} \quad x_{i}>0, x_{1}+\ldots+x_{n}=1 \tag{4.3}
\end{equation*}
$$

so that the integral (4.2) is a weighted mean of exponentials. Therefore, if all circuit matrix elements $B_{i j} B_{j k} \ldots B_{q i}$ are positive in the Λ representation

$$
\begin{equation*}
\sum_{i} \mathrm{e}^{\Lambda}-B_{i i}^{n} \leqslant \mathscr{I}_{n} \leqslant \sum_{i} \mathrm{e}^{\Lambda}+B_{i i}^{n} \tag{4.4}
\end{equation*}
$$

and we are led to the following proposition.
Proposition 1. If C is a given Hermitian matrix with greatest and least eigenvalues C_{+} and C.- and B is a positive definite matrix of finite norm, with positive circuit matrix elements in the representation with C diagonal, then

$$
\begin{equation*}
J_{n}=(n-1)!\operatorname{Tr} \int \mathrm{e}^{x_{1} c} B \ldots \mathrm{e}^{x_{n} c} B \mathrm{~d} x \ldots \mathrm{~d} x_{n-1} \quad \sum x_{i}=1 \tag{4.5}
\end{equation*}
$$

is positive with bounds

$$
\begin{equation*}
\mathrm{e}^{C_{-}} \operatorname{Tr}\left(B^{n}\right) \leqslant J_{n} \leqslant \mathrm{e}^{C_{+}} \operatorname{Tr}\left(B^{n}\right) \tag{4.6}
\end{equation*}
$$

which are attained when B commutes with C.
The result (4.6) follows immediately from (4.4).
The positive circuit matrix elements are found in the following cases.
(i) If all $B_{i j}$ are positive.
(ii) For 2×2 matrices, in which off-diagonal elements of B enter only as $\left|B_{i j}\right|^{2}$.
(iii) If B is approximately diagonal in the C representation, for to order $\left|B_{i j}\right|^{2}, i \neq j$, the only contributions to J_{n} from off-diagonal elements of B are of the form $B_{i i}^{r} B_{i j} B_{i j}^{s} B_{i j} B_{i i}^{t}, r+s+t+2=n$, which are positive since B is Hermitian.
(iv) If B is a 'tree' matrix in the representation with C diagonal.

Under the same conditions closer bounds can be derived.
Proposition 2. If B and C satisfy the conditions of proposition 1, then the upper and lower bounds of the integral J_{n} are

$$
\begin{equation*}
J_{n} \sup =\sum_{i} \mathrm{e}^{c_{i}} B_{i}^{n}, \tag{4.7}
\end{equation*}
$$

in which the eigenvalues C_{i} and B_{i} of C and B are both arranged in ascending order

$$
\operatorname{Tr}(\exp (A-\lambda B)) \text { as a Laplace transform }
$$

(similarly ordered), and

$$
\begin{equation*}
J_{n} \inf =\sum_{i} \mathrm{e}^{C_{i}} B_{i}^{n} \tag{4.8}
\end{equation*}
$$

with the eigenvalues C_{i} in ascending and B_{i} in descending order (oppositely ordered).
Proof. The convexity of the exponential function leads directly to the inequality for divided differences stated in appendix 1 , from which it follows that
$\frac{1}{n}\left(\mathrm{e}^{C_{i}}+\mathrm{e}^{C_{i}}+\ldots+\mathrm{e}^{C_{q}}\right) B_{i j} B_{j k} \ldots B_{q i} \geqslant J_{n} \geqslant \mathrm{e}^{\left(C_{i}+C_{i} \ldots+C_{q}\right) / n} B_{i j} B_{j k} \ldots B_{q i}$
or

$$
\begin{equation*}
\operatorname{Tr} \mathrm{e}^{C} B^{n} \geqslant J_{n} \geqslant \operatorname{Tr}\left(\mathrm{e}^{C / n} B\right)^{n} \tag{4.10}
\end{equation*}
$$

and then, using the final result of appendix 2 ,

$$
\begin{equation*}
\left.\sum_{i} \mathrm{e}^{C_{i}} B_{i}^{n}(\text { similarly ordered }) \geqslant J_{n} \geqslant \sum_{i} \mathrm{e}^{C_{i}} B_{i}^{n} \text { (oppositely ordered }\right) \tag{4.11}
\end{equation*}
$$

Note that proposition 1 is a consequence of the second, and is obtained by varying the B_{i} in (4.11). However, the first is more easily derived independently.
3×3 matrices. Without the assumption of positive circuit matrix elements, the analysis is much more difficult; however, by inequalities Le Couteur (1978) derived the lower bound

$$
\begin{equation*}
\mathscr{J}_{3} \geqslant \sum_{i} \mathrm{e}^{c_{i}}\left(B_{i i}\right)^{3} \tag{4.12}
\end{equation*}
$$

for a general Hermitian A and positive definite B. This result is similar to (4.6) and (4.11) and the bound is realised by commuting matrices B and C.

5. General positive definite B : computational results

It is important to know whether the bounds on \mathscr{I}_{n} or J_{n} given in $\S 4$ are generally valid for positive definite matrices B, without the restriction that the circuit matrix elements of B are positive. Because of the severe analytical difficulties of this non-linear problem, an extensive computer survey was made to determine the minima of \mathscr{I}_{n} or J_{n}, using matrices B with elements $B_{i j}$ of either sign.

In the first series of computations to test positivity of \mathscr{I}_{n} matrices B normalised to $\operatorname{Tr} B=1$ and matrices Λ with $\operatorname{Tr} \Lambda$ fixed were explored. The elements of B and Λ were varied to find the lowest \mathscr{I}_{n}, calculated from (3.2), by using the general minimisation code praxis in double precision arithmetic. The search was limited to matrix dimensions $N \leqslant 7$ and orders $3,4,5$ of \mathscr{I}_{n}, with many different randomly generated matrices Λ and B used as the starting point for minimisation. In each case the minimum of \mathscr{I}_{n} was positive, typically of order 10^{-6} starting from an initial value of order 10^{7}.

The form of these results suggested the bounds stated in $\S 4$, and to test these directly matrices C with given eigenvalues and matrices B with given eigenvalues or given trace were examined in a second series of computations. All results were consistent with the bounds.

As the number of terms in equation (3.2) for \mathscr{I}_{n} is N^{n} it is difficult to extend these results further. However, the structure of (4.1) shows that negative contributions to \mathscr{I}_{n} can arise first when $N \geqslant 3$ and $n \geqslant 3$ so the results given are a significant test of the bounds stated, without the restriction to positive circuit matrix elements.

6. General positive definite B : variational methods

The results given in $\S 4$ cover the main cases in which $\rho(t)$ and \mathscr{I}_{n} are known to be positive. The results of $\S 5$ suggest that the bounds stated in $\S 4$ are generally true for all positive definite B and so an analytical investigation of the minima of \mathscr{I}_{n} or J_{n} is appropriate.

We suppose B is scaled to satisfy the condition

$$
\begin{equation*}
\operatorname{Tr} B^{n}=1 \tag{6.1}
\end{equation*}
$$

and since B is positive definite it may be parametrised as

$$
\begin{equation*}
B=\beta^{2} \tag{6.2}
\end{equation*}
$$

where β is a Hermitian matrix, constrained only by (6.1).
Now consider a variation δB of B keeping C fixed; then using the cyclic properties of the trace
$\delta J_{n}=n!\operatorname{Tr} \int\left(\mathrm{e}^{x_{1} C} B C^{x_{2} C} \ldots B \mathrm{e}^{x_{n} C}\right) \delta B \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n-1}=n \operatorname{Tr} Q \delta B$
where the matrix Q is defined by (6.3) and formally

$$
\begin{equation*}
Q_{i j}=\frac{1}{n}\left(\frac{\delta J_{n}}{\delta B_{i i}}\right)_{C} . \tag{6.4}
\end{equation*}
$$

Note that the definitions of J_{n} and Q imply generally

$$
\begin{equation*}
J_{n}=\operatorname{Tr} Q B \tag{6.5}
\end{equation*}
$$

The condition for a turning value of J_{n}, subject to the auxiliary condition (6.1), is, with a Lagrangian multiplier μ,

$$
\begin{equation*}
\operatorname{Tr} Q \delta B=\mu \operatorname{Tr} B^{n-1} \delta B \tag{6.6}
\end{equation*}
$$

or, from (6.2),

$$
\operatorname{Tr}(Q \beta+\beta Q) \delta \beta=2 \mu \operatorname{Tr} B^{n-1} \beta \delta \beta
$$

and since $\delta \beta$ is an arbitrary Hermitian matrix this requires the coefficient of $\delta \beta_{i j}$ to vanish, that is

$$
Q \beta+\beta Q=2 \mu B^{n-1} \beta
$$

or

$$
\begin{equation*}
Q B=B Q=\beta Q \beta=\mu B^{n} \tag{6.7}
\end{equation*}
$$

and so at the turning value

$$
\begin{equation*}
J_{n}=\mu . \tag{6.8}
\end{equation*}
$$

It remains to establish bounds on J_{n}. The substitution

$$
\begin{equation*}
C \rightarrow \theta C \quad 0 \leqslant \theta \leqslant 1 \tag{6.9}
\end{equation*}
$$

in (4.5) leads, after using cyclic properties of the trace, to

$$
\begin{align*}
\partial J_{n}(\theta) / \partial \theta & =n!\operatorname{Tr} C \int x_{1} \mathrm{e}^{x_{1} \theta C} B \ldots B \mathrm{e}^{x_{n} \theta C} B \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n-1} \tag{6.10}\\
& =n!\operatorname{Tr} C \int \mathrm{e}^{x_{1} \theta C} B \ldots B \mathrm{e}^{x_{n} \theta C} B \mathrm{e}^{x_{n+1} \theta C} \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n} \quad\left(\Sigma x_{i}=1\right) \tag{6.11}\\
& =\operatorname{Tr} C R
\end{align*}
$$

where the Hermitian matrix R, defined by (6.11), is the same as that introduced in § 10 of Le Couteur (1978) to handle general variations of Λ or C according to

$$
\begin{equation*}
\delta J_{n}=\operatorname{Tr} R \delta C \tag{6.12}
\end{equation*}
$$

As discussed in that paper, equation (6.7) has simple solutions in which B commutes with $C, J_{n}=\operatorname{Tr}^{A} B^{n}>0, Q=\mathrm{e}^{A} B^{n-1}$, but the general solution of (6.7) or of (6.7) and (6.12) in combination is not known. However, in principle the most general solution is not required; we need only the solutions corresponding to the lowest (or highest) value of J_{n}. In the following these are examined by a heuristic argument.

As θ increases from 0 to 1 the curve along which, for each $\theta, J(\theta)$ attains its lowest (highest) value must be the envelope of all solutions of (6.7) with C replaced by θQ : at each θ let $B(\theta)$ be the matrix B which gives the point on the envelope.

It is now necessary to assume that $B(\theta)$ varies continuously with θ. Then at each θ, $B(\theta)$ must minimise (maximise) $\partial J_{n} / \partial \theta$ as well as $J(\theta)$ so that in addition to

$$
\begin{equation*}
Q(\theta) B(\theta)=\mu(\theta) B^{n}(\theta) \tag{6.7a}
\end{equation*}
$$

$B(\theta)$ must satisfy the similar equation derived by variation of (6.10) or (6.11). As $\delta\left(\partial J_{n}(\theta) / \mathrm{d} \theta\right)$

$$
\begin{align*}
= & n!\operatorname{Tr} \int\left(C x_{1} \mathrm{e}^{x_{1} \theta C} B \ldots \mathrm{e}^{x_{n} \theta C}+\mathrm{e}^{x_{n} \theta C} B C x_{1} \mathrm{e}^{x_{1} \theta C} \ldots \mathrm{e}^{x_{n-1} \theta C}+\ldots\right. \\
& \left.+\mathrm{e}^{x_{2} \theta C} B \ldots C x_{1} \mathrm{e}^{x_{1} \theta C}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n-1} \delta B \\
= & \operatorname{Tr} S \times \delta B \tag{6.13}
\end{align*}
$$

the condition is

$$
\begin{equation*}
S(\theta) B(\theta)=\nu B^{n}(\theta) \tag{6.14}
\end{equation*}
$$

Now consider how the envelope starts from $\theta=0$. For $\theta \ll 1$

$$
\begin{equation*}
J_{n}(\theta)=\operatorname{Tr} B^{n}(\theta)+\theta \operatorname{Tr} C B^{n}(\theta)+\mathrm{O}\left(\theta^{2}\right) \tag{6.15}
\end{equation*}
$$

With the scaling (6.1) the upper and lower bounds of $\operatorname{Tr} C B^{n}(\theta)$ are C_{+}and C_{-} which are attained when $B(\theta)$ commutes with C and has only one non-vanishing eigenvalue, 1 , in correspondence with C_{+}or C_{-}respectively, as follows by evaluating the trace in a representation with C diagonal. This defines the initial $B(\theta)=B(0)$. As θ increases the same $B(\theta)$ continues to satisfy (6.7a) and (6.14) and, as shown in § 4, for each θ makes $J_{n}(\theta)$ a local maximum (minimum) with respect to variation of B. The argument of $\S 4$, applied to (6.10), shows that the same $B(\theta)$ makes $\mathrm{d} J_{n} / \mathrm{d} \theta$ a local
maximum (minimum) with respect to variation of B. Therefore with the above continuity assumption, the upper (lower) envelope is generated by $B(\theta)=B(0)$. Accordingly, putting $\theta=1$,

$$
\begin{equation*}
\mathrm{e}^{C_{+}} \geqslant J_{n} \geqslant \mathrm{e}^{C_{-}} \tag{6.16}
\end{equation*}
$$

and as J_{n} scales as B^{n} this implies the bounds stated in proposition 1.
The other solutions of (6.7) and (6.14) in which B commutes with C are not true minima or maxima of J_{n}; as shown in appendix 3 , they are saddle points and the results of § 4 make it clear that these solutions cannot cross the bounds given. At $\theta \approx 0$ these are the only solutions, but it has not been possible rigorously to exclude the possibility that new types of solution may appear for θ above some positive lower limit θ_{0}, and eventually cross the bounds for some $\theta>\theta_{0}$; this is why above continuity was assumed explicitly. Such new solutions are unlikely because the n^{2} matrix element $B_{i j}$ would have to satisfy the $2 n^{2}$ conditions (6.7) and (6.14). This type of non-linear problem is usually handled by computation and the extensive search described in $\S 5$ found no exception to the bounds proposed.

Proposition 2 can be examined similarly for general positive definite matrices B. Keeping C fixed, consider infinitesimal variations of B which leave its spectrum unchanged:

$$
\begin{equation*}
B \rightarrow(1+\mathrm{i} \epsilon) B(1-\mathrm{i} \epsilon) \quad \delta B=\mathrm{i}(\epsilon, B) \tag{6.17}
\end{equation*}
$$

where ϵ is an arbitrary infinitesimal Hermitian matrix. Then, from (6.3)

$$
\begin{equation*}
\delta J_{n}=\operatorname{Tri} Q(\epsilon, B)=\mathrm{i} \sum_{j, k}(B Q-Q B)_{j k} \epsilon_{k j} . \tag{6.18}
\end{equation*}
$$

The matrices B which yield turning values of J_{n} must make δJ_{n} vanish for an arbitrary Hermitian ϵ; since Q and therefore $\mathrm{i}(B, Q)$ are Hermitian this requires

$$
\begin{equation*}
(B, Q)=0 . \tag{6.19}
\end{equation*}
$$

Alternatively to (6.17) one could vary C by canonical transformation leaving B unchanged and then, using (6.13), the condition for a stationary value of J_{n} is

$$
\begin{equation*}
(C, R)=0 . \tag{6.20}
\end{equation*}
$$

But (6.20) does not yield independent information from (6.18) because simultaneous canonical transformation of B and C gives $\delta J_{n} \equiv 0$, so that

$$
(B, Q)+(C, R) \equiv 0
$$

As in the previous case, we seek the upper and lower envelopes of the solutions of (6.19) with C replaced by θC; these must satisfy

$$
\begin{equation*}
(Q(\theta), B(\theta))=0 \quad \text { and } \quad(S(\theta), B(\theta))=0 \tag{6.21}
\end{equation*}
$$

in place of (6.7a) and (6.14).
For $\theta \ll 1,(6.15)$ shows that the upper (lower) bound of $J_{n}(\theta)$ corresponds to the extremum of $\operatorname{Tr} C B^{n}(\theta)$ which, according to a theorem of Marcus (1956), occurs when $B(\theta)$ commutes with C and the eigenvalues C_{i} and B_{i} are arranged in the same (opposite) order. As previously, it is expected that this $B(\theta)$ generates the whole upper
(lower) envelope on which J_{n} is then trivially evaluated as

$$
\begin{equation*}
J_{n}=\sum_{r} \mathrm{e}^{c_{r}} \boldsymbol{B}_{r}^{n}, \tag{6.22}
\end{equation*}
$$

which has upper and lower bounds when the eigenvalues of B and C are ordered as stated in proposition 2.

7. Discussion

As mentioned in the introduction, the existence of the representation (1.1) has important consequences for the application of Padé approximations to problems of statistical mechanics and possibly Euclidean field theory. Bessis et al (1975) showed how these approximations may be developed in terms of the moments of ρ. An advantage of the approach of this paper is that it provides explicit formulae for the moments in the general case of Hermitian A and positive definite B. The upper and lower bounds for the moments stated in $\S 4$ hold strictly under the conditions given there and the close bounds will often provide useful approximations to the moments.

The moments \mathscr{I}_{n} must be positive under much less restrictive conditions than given in §4, because small negative contributions cannot change their sign. As shown in §§ 5 and 6 , it is likely that the bounds stated are generally valid if A and B are bounded and B is positive definite. In any case, the problem of determining the bounds of \mathscr{I}_{n} in terms of the eigenvalues or traces of A and B is well posed and the variational equations given in $\S 6$ provide strong constraints on the matrices to be considered in a more complete solution.

It may be remarked that the difficulty of a more direct approach to the general problem is that \mathscr{I}_{n} is a polynomial of degree n in the $B_{i j}$ and, for $n>2$, a positive definite polynomial cannot necessarily be expressed as a sum of squares.

The analysis leads to some inequalities for divided differences of the exponential and for $\operatorname{Tr}(A B)^{n}$. These are of general interest apart from the main problem and so have been separated into two appendices.

Acknowledgments

I wish to thank Drs K Kumar, W S Woolcock, M L Mehta and D Bessis for critical discussions.

Appendix 1. Inequality for divided differences of the exponential

Hermite's formula (Milne-Thomson 1933) expresses the nth divided difference of e^{C} as a weighted average:

$$
\begin{gathered}
(n-1)!\left[C_{i} C_{j} \ldots C_{q}\right]=(n-1)!\int \mathrm{e}^{x_{1} C_{i}} \mathrm{e}^{x_{2} C_{1}} \ldots \mathrm{e}^{x_{n} C_{q}} \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n-1} \\
x_{i}>0, \quad \sum x_{i}=1 .
\end{gathered}
$$

As e^{C} is a convex function of C, for any set of x_{i} in the integrand

$$
\begin{equation*}
x_{1} \mathrm{e}^{C_{i}}+x_{2} \mathrm{e}^{C_{i}}+\ldots+x_{n} \mathrm{e}^{C_{q}} \geqslant \exp \left(x_{1} C_{i}+\ldots+x_{n} C_{q}\right) \tag{A1.1}
\end{equation*}
$$

By summing over the n cyclic permutations of the x_{i} we obtain, since $\Sigma x_{i}=1$,

$$
\begin{align*}
\left(\mathrm{e}^{C_{i}}+\mathrm{e}^{C_{i}}+\ldots+\mathrm{e}^{C_{q}}\right) & \geqslant \sum_{\text {perms }} \exp \left(x_{1} C_{i}+\ldots+x_{n} C_{q}\right) \\
& \geqslant n \exp \left(C_{i}+C_{j}+\ldots+C_{q}\right) / n, \tag{A1.2}
\end{align*}
$$

in which the last inequality follows from comparison of arithmetic and geometric means.

By applying this to Hermite's integral we find an inequality for divided differences:

$$
\begin{equation*}
\left(\mathrm{e}^{C_{i}}+\mathrm{e}^{C_{i}} \ldots+\mathrm{e}^{C_{a}}\right) / n \geqslant(n-1)!\left[C_{i} C_{j} \ldots C_{q}\right] \geqslant \exp \left[\left(C_{i}+\ldots+C_{q}\right) / n\right] \tag{A1.3}
\end{equation*}
$$

Appendix 2. Inequality for matrix power products

If A, B are positive definite $N \times N$ matrices it was shown by Golden (1965), and Thompson (1965) for $n=2^{m}$ and by Lieb and Thirring (1976) for general n, that

$$
\begin{equation*}
\operatorname{Tr} A^{n} B^{n} \geqslant \operatorname{Tr}(A B)^{n} \tag{A2.1}
\end{equation*}
$$

and by Marcus (1956) that

$$
\begin{equation*}
\sum_{i} A_{i}^{n} B_{i}^{n} \geqslant \operatorname{Tr} A^{n} B^{n} \geqslant \sum_{i} A_{i}^{n} B_{N-i}^{n} \tag{A2.2}
\end{equation*}
$$

where A_{i}, B_{i} are the eigenvalues of A, B ordered in the same sense. These results suggest

$$
\begin{equation*}
\operatorname{Tr}(A B)^{n} \geqslant \sum_{i} A_{i}^{n} B_{N-i}^{n} \tag{A2.3}
\end{equation*}
$$

which does not seem to be in the literature and is a simple example of the method of $\S 6$.
Proof. Let $R=(A B)^{n}=A B A B \ldots A B$. Since the eigenvalues A_{i}, B_{i} are fixed, the turning values of $\operatorname{Tr} R$ with respect to canonical transformation of B as in (6.15) are determined from (6.17):

$$
\begin{equation*}
Q B=B Q \quad \text { with } Q=A B A B \ldots A \tag{A2.4}
\end{equation*}
$$

Thus, at a stationary value of $\operatorname{Tr} R$,

$$
\begin{equation*}
R=A B A B \ldots A B=B A B A \ldots B A=\left(B^{1 / 2} A B^{1 / 2}\right)^{n} \tag{A2.5}
\end{equation*}
$$

where $B^{1 / 2}$ is the positive square root of B. It follows immediately from (5) that R is Hermitian and

$$
\begin{equation*}
B R=R B \quad \text { and } \quad A R=R A \tag{A2.6}
\end{equation*}
$$

of which the second is equation (6.20) for this special case. If the eigenvalues of R are all different, (6) implies that A and B are diagonal in the representation with R diagonal and therefore commute with each other. If the eigenvalues of R are degenerate there is a subspace in which R is a positive multiple r of the unit matrix and in this subspace
$B^{1 / 2} A B^{1 / 2}=R^{1 / 2}$ is a positive multiple of the unit matrix so that again A and B commute. Thus, at a turning value of $\operatorname{Tr} R$,

$$
\begin{equation*}
\operatorname{Tr}(A B)^{n}=\sum A_{j}^{n} B_{j}^{n} \tag{A2.7}
\end{equation*}
$$

and the upper and lower limits stated in (2) and (3) follow from classical inequalities for the ordering of the sets A_{j}, B_{j}. So, collecting results, we have

$$
\begin{equation*}
\sum_{i} A_{i}^{n} B_{i}^{n} \geqslant \operatorname{Tr} A^{n} B^{n} \geqslant \operatorname{Tr}(A B)^{n} \geqslant \sum A_{i}^{n} B_{N-i}^{n} . \tag{A2.8}
\end{equation*}
$$

Appendix 3. Other stationary values

J_{n} is obviously stationary with respect to small variations of C or B whenever B and C commute and the nature of these N ! stationary values is of interest. Assuming given eigenvalues of C and B, let C be diagonal and let b_{i} denote eigenvalues of B. Then

$$
\begin{equation*}
B=\mathrm{e}^{-\mathrm{i} \epsilon} b \mathrm{e}^{\mathrm{i} \epsilon} \quad \epsilon=\epsilon^{+}, \tag{A3.1}
\end{equation*}
$$

and as we need consider only small variations of B from the diagonal form, it is sufficient to work to second order in ϵ, assumed small. Then

$$
\begin{align*}
& B=\left(1-\mathrm{i} \epsilon-\epsilon^{2} / 2\right) b\left(1+\mathrm{i} \epsilon-\epsilon^{2} / 2\right) \\
& B_{i j}=\mathrm{i} \epsilon_{i j}\left(b_{i}-b_{j}\right)+\sum_{k} \epsilon_{i k} \epsilon_{k j}\left(b_{k}-\frac{1}{2} b_{i}-\frac{1}{2} b_{j}\right) \quad i \neq j \tag{A3.2a}\\
& B_{i i}=b_{i}+\sum_{k}\left|\epsilon_{i k}\right|^{2}\left(b_{k}-b_{i}\right) \tag{A3.2b}
\end{align*}
$$

and, since the ϵ transformation is unitary, transformation of B^{n} gives

$$
\begin{equation*}
\left(B^{n}\right)_{i i}=b_{i}^{n}+\sum_{k}\left|\epsilon_{i k}\right|^{2}\left(b_{k}^{n}-b_{i}^{n}\right) . \tag{A3.3}
\end{equation*}
$$

Equation (A3.3) has contributions both from the off-diagonal terms $B_{i j}$ which must appear in pairs $B_{i j} B_{j i}$ and from the diagonal terms $\left(B_{i i}\right)^{n}$; these are easily separated:

$$
\begin{align*}
\left(B^{n}\right)_{i i}=b_{i}^{n}+ & \sum_{k} b_{i}^{n-1}\left|\epsilon_{i k}\right|^{2}\left(b_{k}-b_{i}\right) \text { (diagonal terms) } \\
& +\sum_{k}\left|\epsilon_{i k}\right|^{2}\left[b_{k}^{n}-b_{i}^{n}+n b_{i}^{n-1}\left(b_{i}-b_{k}\right)\right] \text { (off-diagonal terms) } \tag{A3.4}
\end{align*}
$$

The terms in (A3.4) can be derived directly:

$$
\begin{align*}
\left(B^{n}\right)_{i i}= & (B B \ldots B)_{i i} \\
= & b_{i}^{n}+n \sum_{j}\left|\epsilon_{i j}\right|^{2} b_{i}^{n-1}\left(b_{j}-b_{i}\right) \text { (diagonal terms) } \tag{A3.5}\\
& +\sum_{j \neq i} \sum_{r, s, t} b_{i}^{r} B_{i j} b_{j}^{s} B_{j i} b_{i}^{t} \quad r+s+t+2=n \text { (off-diagonal terms). }
\end{align*}
$$

Consider

$$
\begin{equation*}
J_{n}=(n-1)!\int \mathrm{e}^{x_{1} c} B \ldots \mathrm{e}^{x_{n} c} B \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n-1} \quad \sum x_{i}=1 \tag{A3.6}
\end{equation*}
$$

When $\epsilon=0, C$ and B commute and $J_{n}=\Sigma_{i} \mathrm{e}^{i} B_{i}^{n}$, we have to calculate J_{n} to second order in ϵ to determine

$$
\begin{align*}
\Delta J_{n}= & J_{n}-\sum_{i} \mathrm{e}^{c_{i}} B_{i}^{n} \\
= & \sum_{i} \mathrm{e}^{c_{i}}\left[\left(B_{i i}\right)^{n}-b_{i}^{n}\right]+\sum_{i} \sum_{j \neq i} \sum_{r, s, t}(n-1)!\int \mathrm{e}^{x_{1} c_{i}} b_{i} \ldots b_{i} \mathrm{e}^{x_{r+1} c_{i}} B_{i j} \tag{A3.7}\\
& \times \mathrm{e}^{x_{r+2} c_{i}} b_{j} \ldots \mathrm{e}^{x_{r+1+s} c_{i}} B_{j i} \mathrm{e}^{x_{r+s+2} c_{i}} b_{i} \ldots \mathrm{e}^{x_{n} c_{i}} b_{i} \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n-1} . \tag{A3.8}
\end{align*}
$$

For $j \neq i, B_{i j} B_{j i}=\left|\epsilon_{i j}\right|^{2}\left(b_{i}-b_{j}\right)^{2}$ and the contributions to ΔJ_{n} from the various $\left|\epsilon_{i j}\right|^{2}$ are additive and may be considered separately. Suppose that just one $\epsilon_{i j}$ is non-vanishing. Note that if C_{i} and C_{i} were equal the integral in the last line of (A3.8) would exactly equal $\mathrm{e}^{C_{i}} \times$ the 'off-diagonal' contribution to $\left(B^{n}\right)_{i i}$ as given in (A3.5): quite generally, since the integrand is positive, we find, according as $C_{i} \gtrless C_{i}, \Delta J_{n} \gtrless$ RHS of (A3.8) with C_{i} replaced by C_{j} in the integrand

$$
\begin{align*}
= & \mathrm{e}^{C_{i}}\left[\left(B_{i i}\right)^{n}-b_{i}^{n}\right]+\mathrm{e}^{C_{i}}\left[\left(B_{i j}\right)^{n}-b_{i}^{n}\right] \\
& +\mathrm{e}^{c_{i}}\left(\text { off-diagonal' contributions to }\left(B^{n}\right)_{i i}+\left(B^{n}\right)_{i j}\right) \\
= & \left(\mathrm{e}^{c_{i}}-\mathrm{e}^{C_{j}}\right)\left[\left(B_{i i}\right)^{n}-b_{i}^{n}\right]+\mathrm{e}^{C_{i}}\left[\left(B^{n}\right)_{i i}+\left(B^{n}\right)_{i j}-b_{i}^{n}-b_{i}^{n}\right] \tag{A3.9}
\end{align*}
$$

and the last term vanishes because the ϵ transformation preserves the trace of B^{n}. So finally, using (A3.2),

$$
\begin{equation*}
\Delta J_{n} \gtrless\left(\mathrm{e}^{C_{i}}-\mathrm{e}^{c_{i}}\right) n b_{i}^{n-1}\left(b_{i}-b_{i}\right) \tag{A3.10}
\end{equation*}
$$

according as $C_{i} \gtrless C_{i}$. Then $\Delta J_{n}>0$ and J_{n} is a true minimum if C_{i} and b_{i} are oppositely ordered and $\Delta J_{n}<0$ and J_{n} is a true maximum if C_{i} and b_{i} are similarly ordered. For the other possible orderings of b_{i} relative to C_{i}, J_{n} is stationary only; these are saddle points.

Similarly, consider

$$
\begin{equation*}
\mathrm{d} J_{n} / \mathrm{d} \theta=n!\operatorname{Tr} \int C x_{1} \mathrm{e}^{x_{1} c_{\theta}} B \ldots \mathrm{e}^{x_{n} C_{\theta}} B \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n-1} \tag{A3.11}
\end{equation*}
$$

When $\epsilon=0, \Lambda$ and B commute and $\partial J_{n} / \mathrm{d} \theta=\Sigma_{i} C_{i} \mathrm{e}^{C_{i} \theta} B_{i}^{n}$. With B given by (A3.2), to second order in ϵ we find, as in (A3.8),

$$
\begin{align*}
\Delta\left(\partial J_{n} / \mathrm{d} \theta\right)= & \left(\partial J_{n} / \mathrm{d} \theta\right)-\sum_{i} C_{i} \mathrm{e}^{C_{i} \theta} b_{i}^{n} \\
= & \sum_{i} C_{i} \mathrm{e}^{\theta C_{i}}\left[\left(B_{i i}\right)^{n}-b_{i}^{n}\right]+\sum_{i, j \neq i} \sum_{r s t} C_{i} x_{1} \mathrm{e}^{x_{1} C_{i}} b_{i} \ldots b_{i} \\
& \times \mathrm{e}^{x_{r+1} C_{i} \theta} B_{i j} \ldots B_{j i} \ldots \mathrm{e}^{x_{n} C_{i} \theta} b_{i} \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n-1} . \tag{A3.12}
\end{align*}
$$

And so, as in (A3.10),

$$
\Delta\left(\partial J_{n} / \mathrm{d} \theta\right) \gtrless C_{i}\left[\left(\mathrm{e}^{\theta C_{i}}-\mathrm{e}^{\theta C_{i}}\right) b_{i}^{n-1}\left(b_{j}-b_{i}\right)\right]
$$

according as $C_{i} \gtrless C_{j}$. So $\partial J_{n} / \mathrm{d} \theta$ is a true minimum if C_{i} and b_{i} are oppositely ordered and $\partial J_{n} / \mathrm{d} \theta$ is a true maximum if C_{i} and b_{i} are similarly ordered.

References

Baker G A 1972 Carnegie Lectures in Physics (New York: Gordon and Breach) vol 5 pp 349-82
Bessis D, Moussa P and Villani M 1975 J. Math. Phys. 162318
Golden S 1965 Phys. Rev. 137 B1127
Le Couteur K J 1978 Proc. Int. Conf. and Winter School of Frontiers of Theoretical Physics ed. F C Auluck, L S Kothari and V S Nanda (New Delhi: Indian National Science Academy) p 209
Lieb E and Thirring W 1976 Studies in Mathematical Physics (Princeton, NJ: Princeton University Press) p 269
Marcus M 1956 Am. Math. Monthly 63173
Mehta M L and Kumar K 1976 J. Phys. A: Math. Gen. 9117
Milne-Thomson L M 1933 Calculus of Finite Differences (London: Macmillan) p 10
Schafroth M R 1951 Helv. Phys. Acta 24645
Thompson C J 1965 J. Math. Phys. 61812
Widder D 1971 An Introduction to Transform Theory (New York: Academic) p 155

